ИИ уже умеет предсказывать спрос, оптимизировать запасы и повышать прибыль интернет-магазина — если внедрить его правильно. Ошибка в подходе может обернуться замороженными деньгами на складе и провалом в продажах. Как сделать так, чтобы искусственный интеллект работал на вас, ускорял оборачиваемость товаров и приносил максимум прибыли? Разбираем ключевые стратегии как увеличить оборачиваемость склада с ИИ в статье.
Как ИИ помогает навести порядок в магазине
Большие данные и прогнозирование спроса
Когда, где и как внедрять ИИ в интернет-магазин
Пошаговый план внедрения ИИ, чтобы увеличить оборачиваемость склада
Перечень «горячих» тем, которые всегда в повестке любого интернет-магазина независимо от рынка и масштаба.
Общий признак и главная причина «болезней» в каждом случае — отсутствие автоматизации и централизованного контроля. Если эти процессы запускаются вынужденно — «по ситуации», а учет ведется в общей тетради, компания всегда будет работать в режиме цейтнота.
Искусственный интеллект и его производные позволяют раз и навсегда избавиться от глупых ошибок, делегировать рутину роботам и начать, наконец получать от продаж удовольствие вместе с прибылью.
Сценариев использования нейросетей в ритейле и e-commerce множество.
Возьмем кейс WMS-платформы (системы управления складом) с интеграцией ML-модуля, использующей принцип learn from experience (обучение на опыте). Это уже существующая альтернатива скучному учетному ПО, которое по умолчанию предлагают ecomm-площадки. Ключевое различие между ними — объем полезной функциональности:
Процессы | Учет | AI/ML |
Автоматический диспетчер | – | + |
Оперативный учет | – | + |
Учет за период | + | + |
Адресное хранение | + | + |
Контроль ресурсов: персонал, оборудование | – | + |
Партионный учет | + | + |
Кросс-докинг | – | + |
Операционный биллинг | – | + |
Источник: TAdviser
Такая система самостоятельно, точнее и быстрее человека обнаруживает закономерности в процессах и предлагает решения для оптимизации складской логистики: заранее предугадывает спрос, находит самые короткие маршруты между точками и лучшие схемы размещения товарных запасов.
Точное прогнозирование спроса гарантирует, что магазин сможет удовлетворять потребности клиентов без избытка или недостатка товаров, поддерживая баланс, необходимый для эффективной оборачиваемости.
Рост показателей на фоне внедрения ИИ:
Используя алгоритмы машинного обучения для анализа Big Data, включая исторические данные о продажах, рыночные тенденции, поведение потребителей и более широкие экономические показатели, искусственный интеллект способен выявлять взаимосвязи, прогнозируя спрос с поразительной точностью.
ИИ одинаково эффективно учитывает индивидуальные параметры цепочки продаж и поставок на любом рынке, помогая оптимизировать запасы, сокращать расходы, заблаговременно реагируя на запросы самых разных клиентов.
Лучшее время задуматься о внедрении ИИ — этап планирования. Хотя интеграция интеллектуальных технологий в уже существующие, отлаженные коммерческие и технические процессы возможна, по опыту, она всегда сопряжена с бОльшими расходами и длительностью адаптационного периода.
Традиционно выбор онлайн-ритейла происходит между инструментами low-code/no-code и созданием сайта c нуля. Не видим смысла повторять многочисленные сравнения и обзоры. Если оставить за бортом набившие оскому, очевидные технические детали и споры о достоинствах и недостатках той или иной платформы, совет относительно подхода к разработке, будет следующим:
В настоящее время создание онлайн-магазина при помощи классического программирования — это удел больших брендов, опирающихся в работе на сложные алгоритмы высоконагруженных систем, либо компаний из премиум-сегмента, которые стремятся отстроиться от конкурентов за счет уникального функционала. Средний и тем более малый бизнес полностью закрывает потребность в эффективности и комфорте, решениями на основе low-code/no-code.
Теперь о специфике, которая сопровождает внедрение технологий ИИ. В первую очередь стоит оценить стоимость внедрения. Вот общий перечень расходов, которые придется учитывать предпринимателю:
Причем, и это важно, расходы на ИИ не заканчиваются вместе с подписанием акта о приеме проекта. Такие этапы, как тестирование, поиск лучших моделей, бесшовная интеграция при обновлении ПО или доработка функциональности c изменением бизнес-архитектуры компании, по сути, никогда не прекращаются, но стоят денег.
Тем не менее снизить стоимость внедрения искусственного интеллекта до «земного» уровня вполне возможно, достаточно подойти к этому вопросу про, то как увеличить оборачиваемость склада рационально.
Дороже всего в разработке обходится кастом: чем больше ручного кода требует продукт, тем «тяжелее» итоговая смета. Отсюда вывод: дешевле собирать онлайн-магазин, параллельно (или последовательно) внедряя ИИ, используя готовые решения — low-code/no-code.
Именно поэтому компании всё чаще отдают предпочтение готовым e-commerce платформам: они позволяют минимизировать затраты на кастомную разработку, быстрее запускать интернет-магазины и внедрять ИИ без сложного программирования.
Вот основные причины, по которым бизнес выбирает e-comm платформы:
Функциональные возможности | Важность |
Интеграция стороннего софта | 90% |
Масштабируемость | 90% |
Стоимость | 85% |
Доступность кастомизации | 81% |
Мониторинг процессов в реальном времени | 80% |
Скорость внедрения | 73% |
Мониторинг нескольких складов | 70% |
Скорость обучения персонала | 69% |
Потенциал ML и AI | 63% |
Мобильное ПО | 49% |
Арсенал дополнительных решений | 44% |
Использование по принципу SAAS | 42% |
Источник: «Сколково»
Безусловно, зерокодинг и шаблонная сборка не избавят вас от необходимости платить программистам за настройку беспроблемной работы приложений и сервисов, однако стоить это будет на порядок меньше, чем создание и автоматизация магазина с нуля, по индивидуальному проекту.
Зачем вашей компании искусственный интеллект?
Чем точнее сформулированы цели, тем короче (и дешевле) путь к ним. В этом отношении компании с опытом на рынке находится в более выигрышном положении, чем новички, так как уже знакомы с реалиями и могут оперировать настоящими, а не предполагаемыми данными о трафике, покупательском спросе, хронических «болячках» своего бизнеса, требующих вмешательства ИИ.
Чтобы не тратить лишние ресурсы и сразу задать верное направление, и вам было проще разобраться, мы подготовили практическое руководство по внедрению ИИ — с его помощью вы сможете избежать ошибок, оценить необходимые ресурсы и сэкономить бюджет.
Прежде чем передавать управление ИИ, разберите, какие задачи в бизнесе можно автоматизировать.
Четкое понимание задач поможет выбрать подходящие инструменты. Например:
Снижение товарных излишков на 15%
Повышение точности прогнозирования спроса до 90%
Оптимизация времени обработки заказов на 20%
Автоматическое пополнение запасов без ручного вмешательства
ИИ — это не волшебная кнопка, а инструмент, который требует координации работы специалистов:
ИИ должен работать в связке с вашими ERP, CRM, TMS. Проверьте:
Может ли система получать и обрабатывать данные без задержек?
Есть ли совместимость с текущим ПО, или потребуется кастомизация?
Как защищены данные? Исключите риски утечек.
Не внедряйте ИИ во все процессы сразу — начните с теста на небольшом участке:
ИИ — не статичное решение, а самообучающаяся система. Контролируйте:
Точность прогнозов — если снижается, пересмотрите алгоритмы.
Оборачиваемость склада — растёт ли скорость продаж?
Экономию на закупках и логистике — действительно ли AI сокращает затраты?
Вывод: Правильное внедрение AI/ML не просто снижает затраты, но и делает бизнес предсказуемым. Чем раньше компания научится использовать ИИ, тем быстрее выйдет на новый уровень эффективности.
В современном бизнесе цель увеличить оборачиваемость склада с помощью ИИ – поменяет правила игры для компаний, которые стремятся быть первыми. Благодаря способности улучшать прогнозирование спроса, минимизировать проблемы с запасами и принимать решения на основе данных, искусственный интеллект меняет подход к работе с цепочками поставок. Применяя возможности ИИ, компании любого масштаба уже сейчас могут выйти на новый уровень эффективности, удовлетворенности клиентов и адаптивности.
Готовы вывести бизнес на новый уровень с помощью искусственного интеллекта? Оставьте заявку — наши эксперты помогут вам на любом этапе внедрения, от стратегии до готового решения!
Никакого спама, только анонсы новых статей
ИП Гришанин Кирилл Олегович
ИНН 774313842609
Б. Новодмитровская ул., 36, стр. 12, вход 6,
Москва, Россия, 127015
Ahad Ha'am 54,Tel Aviv-Yafo,Израиль